A novel comparative deep learning framework for facial age estimation
نویسندگان
چکیده
منابع مشابه
Group-aware deep feature learning for facial age estimation
In this paper, we propose a group-aware deep feature learning (GA-DFL) approach for facial age estimation. Unlike most existing methods which utilize hand-crafted descriptors for face representation, our GA-DFL method learns a discriminative feature descriptor per image directly from raw pixels for face representation under the deep convolutional neural networks framework. Motivated by the fact...
متن کاملA Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation
The problem of automatic age estimation from facial images poses a great number of challenges: uncontrollable environment, insufficient and incomplete training data, strong person-specificity, and high within-range variance, among others. These difficulties have made researchers of the field propose complex and strongly hand-crafted descriptors, which make it difficult to replicate and compare ...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملSemi-Supervised Adaptive Label Distribution Learning for Facial Age Estimation
Lack of sufficient training data with exact ages is still a challenge for facial age estimation. To deal with such problem, a method called Label Distribution Learning (LDL) was proposed to utilize the neighboring ages while learning a particular age. Later, an adaptive version of LDL called ALDL was proposed to generate a proper label distribution for each age. However, the adaptation process ...
متن کاملUsing Unsupervised Deep Learning for Human Age Estimation Problem
Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Image and Video Processing
سال: 2016
ISSN: 1687-5281
DOI: 10.1186/s13640-016-0151-4